Analysis of the proteins involved in the in vivo repair of base-base mismatches and four-base loops formed during meiotic recombination in the yeast Saccharomyces cerevisiae.

نویسندگان

  • Jana E Stone
  • Thomas D Petes
چکیده

DNA mismatches are generated when heteroduplexes formed during recombination involve DNA strands that are not completely complementary. We used tetrad analysis in Saccharomyces cerevisiae to examine the meiotic repair of a base-base mismatch and a four-base loop in a wild-type strain and in strains with mutations in genes implicated in DNA mismatch repair. Efficient repair of the base-base mismatch required Msh2p, Msh6p, Mlh1p, and Pms1p, but not Msh3p, Msh4p, Msh5p, Mlh2p, Mlh3p, Exo1p, Rad1p, Rad27p, or the DNA proofreading exonuclease of DNA polymerase delta. Efficient repair of the four-base loop required Msh2p, Msh3p, Mlh1p, and Pms1p, but not Msh4p, Msh5p, Msh6p, Mlh2p, Mlh3p, Exo1p, Rad1p, Rad27p, or the proofreading exonuclease of DNA polymerase delta. We find evidence that a novel Mlh1p-independent complex competes with an Mlhp-dependent complex for the repair of a four-base loop; repair of the four-base loop was affected by loss of the Mlh3p, and the repair defect of the mlh1 and pms1 strains was significantly smaller than that observed in the msh2 strain. We also found that the frequency and position of local double-strand DNA breaks affect the ratio of mismatch repair events that lead to gene conversion vs. restoration of Mendelian segregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae

In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...

متن کامل

Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae.

The yeast Saccharomyces cerevisiae encodes a set of genes that show strong amino acid sequence similarity to MutS and MutL, proteins required for mismatch repair in Escherichia coli. We examined the role of MSH2 and PMS1, yeast homologs of mutS and mutL, respectively, in the repair of base pair mismatches formed during meiotic recombination. By using specifically marked HIS4 and ARG4 alleles, w...

متن کامل

Regulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes.

The Saccharomyces cerevisiae homologs of the bacterial mismatch repair proteins MutS and MutL correct replication errors and prevent recombination between homeologous (nonidentical) sequences. Previously, we demonstrated that Msh2p, Msh3p, and Pms1p regulate recombination between 91% identical inverted repeats, and here use the same substrates to show that Mlh1p and Msh6p have important antirec...

متن کامل

A 140-bp-long palindromic sequence induces double-strand breaks during meiosis in the yeast Saccharomyces cerevisiae.

Palindromic sequences have the potential to form hairpin or cruciform structures, which are putative substrates for several nucleases and mismatch repair enzymes. A genetic method was developed to detect such structures in vivo in the yeast Saccharomyces cerevisiae. Using this method we previously showed that short hairpin structures are poorly repaired by the mismatch repair system in S. cerev...

متن کامل

The large loop repair and mismatch repair pathways of Saccharomyces cerevisiae act on distinct substrates during meiosis.

During meiotic recombination in the yeast Saccharomyces cerevisiae, heteroduplex DNA is formed when single-stranded DNAs from two homologs anneal as a consequence of strand invasion. If the two DNA strands differ in sequence, a mismatch will be generated. Mismatches in heteroduplex DNA are recognized and repaired efficiently by meiotic DNA mismatch repair systems. Components of two meiotic syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 173 3  شماره 

صفحات  -

تاریخ انتشار 2006